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This is a supplement for the paper titled “Power-Law Scaling in the Brain Surface Electric Po-
tential”. In this supplement we present details of the experimental set up and analysis: amplifier
characterization (roll-off and noise floor). We discuss details of the data handing and power law
analysis steps. At the end, we also introduce the simulation in more detail.

I. EXPERIMENTAL METHODS

A. Subjects

Figure S1: Subjects who participated in the study

Twenty-one human subjects (ages 18-45, 8 females),
see table in Fig.1, were implanted with subdural electrode
arrays for the localization of seizure foci prior to surgical
treatment of medically refractory epilepsy. The arrays

were typically placed for 5-7 days with the location of the
electrodes and duration of implantation determined in-
dependently by clinical criteria alone. Experiments were
performed at Harborview hospital at the University of
Washington (UW). Subjects were typically studied 4-6
days after craniotomy and electrode placement to allow
for recovery from the surgery. Subjects gave informed
consent for participation in a manner approved by the
Institutional Review Board of the University of Wash-
ington.

B. Recordings

Figure S2: Recording Setup with clinical and experimental
amplifiers recording in parallel (with scalp reference).

All data were recorded at the bedside with Neuroscan
Synamps2 amplifiers (Compumedics-Neuroscan, San An-
tonio, TX), in parallel with a clinical recording system
(XLTEK or Nicolet-BMSI), as shown schematically in
Fig. 2. The signal was split outside of the head, prior to
amplification. The two amplifiers used common ground
and reference (both from the scalp).

The platinum electrodes (Ad-Tech, Racine, WI) were
configured as 8x{4,5,6,8} rectangular arrays. The elec-
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Figure S3: 52 nearest-neighbor differential pairs were gener-
ated from the original 32 electrode grids

trodes were 4mm in diameter (2.3mm exposed), at 1 cm
inter-electrode distance, and embedded in silastic The
arrays were placed on the lateral frontal, temporal, and
parietal cortex - shown for subjects 1 (S1 - black) and
2 (S2 - white) on a template brain in figure 2 and on
the actual brains in figure S4 for subjects 1-4. Because
vasculature significantly changed the nature of the sig-
nal, electrodes which rested on top of vasculature were
excluded from analysis. Operative photographs showing
locations of this rejection are shown in figure S4. For
the 4 subjects sampled at 10kHz, the 32 electrodes ini-
tially chosen (before rejecting based upon vasculature)
were from the portion of the 64 electrode grid away from
the seizure focus. For the other 16 subjects, we simply
avoided seizure focus sites.

C. Tasks

All experiments were performed at the bedside.

1. Fixation

The subjects fixated on a 10cm “×”, on the wall 3m
away, for 2 or 3 minutes (120/180s) at a time (Fig. S5).
They were instructed to remain motionless and keep their
eyes open, blinking if they needed to.

2. Finger movement

Subjects were cued with a word displayed on a bedside
monitor to move fingers independently during 2-second
movement trials. They typically moved each finger 3-5
times during each trial, but some trials included many
more movements. A 2-second rest trial (blank screen)
followed each movement trial. There were 30 movement
cues for each finger, and trial types were interleaved ran-
domly (typically 100-150 totally movements per finger).

Figure S4: Electrode array placement on cortex for subjects
1-4. The yellow dots indicate electrodes which were rejected
for analysis based upon their location above vasculature. The
white boxes enclose corresponding cortical areas on exposed
photographs (left) and photographs with grids in situ (right).

Finger position was recorded using a 5 degree-of-freedom
dataglove (Fig. 2). Event markers were calculated mark-
ing the initiation of movement following a cue, and the
peak of each finger movement . “Rest” events were de-
fined during random periods occurring at least 500 ms
from any movement initiation or termination, and sepa-
rated by at least 250 ms from any other rest event (there
were typically 150-250 such rest events). See figure S20
(A) and (B).

D. Spectral Calculation

Figure S6 illustrates the steps taken to transform the
raw voltage time series from each electrode into power
spectra. The data was re-referenced in terms of neigh-
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Figure S5: Subjects fixated on a 10cm cross 3 meters away
for 2-3 minutes during the fixation task.

boring differential pair channels, V (t) = Vi(t) − Vj(t)
(our 32 electrode arrays have 52 differential pair chan-
nels each, as in figure S4). This significantly reduced the
overall correlated noise in the signal. This reduction is to
be expected, since it removes various non-local contribu-
tions to the signal, while the signal of interest originates
from the neurons (about 5 × 105 of them) immediately
underneath each electrode. Note that a common aver-
age re-reference, for example, increases the uncorrelated
noise (noise-floor) by a factor of

√
Numberelectrodes,

and is therefore not advisable. Next, the time series were
broken-up into 1 second long intervals, overlapping by 0.5
second (we did not examine phenomena with frequencies
below 1Hz). Each of these epochs was windowed

V ′(τ,m) = V (τ + 1
2mT )H(τ) (1)

with a Hann-window H(τ) of the form

H(τ) = 1
2

[
1 + cos

(
2π
T
τ

)]
(2)

inside time interval−T/2 ≤ τ ≤ T/2 with T = 1 sec, and
H(τ) = 0 at all other times (see figure S7). The power
spectral density (PSD) for each epoch follows from the
Fourier transform

P (f,m) =
1
T

(
T∑
τ=1

V ′(τ,m) ei2πfτ
)2

(3)

Each of these individual spectra is quite noisy; examples
of this are shown in Fig.6.E. Taking the average PSD
over all epochs

PR(f) =
1
M

M∑
m=1

P (f,m) (4)

quiets this down into a smooth PSD for each channel pair,
as illustrated by the green line in Fig.2 of the main text
and again in Fig.6.F. (The same curve but shown with
a linear frequency scale instead of a logarithmic one.)

Figure S6: Power Spectral Density Calculation: (A) and (B)
show voltage time series of 2 nearby electrodes during rest.
Their difference, shown in (C) (local pair electrode referenc-
ing) is boken-up into 1 second long segments, and each is
Hann windowed (D) and Fourier transformed to generate the
power spectra, shown in (E). Each is very noisy, but their
average in (F) is smooth.
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Figure S7: Using a Hann-window does not introduce an over-
all effect on the shape of the PSD.

The combination of the 50% window overlap and Hann
window insured that each timepoint contributed equally
to the PSD.

Each PSD represents the Fourier transform of the volt-
age auto-correlation function

G(τ) =
∫
dt V (t+ τ)V (t) (5)

averaged over the entire time interval of the experiment.
Because of this, phenomena like the power-law we find
below have directly interpretable implications for the cor-
relation of the voltage timeseries.

E. Amplifier Characterization and correction of
spectra

The properties of the amplifiers proved a major issue
in the data analysis because of their (surprisingly high)
noise floors and frequency-dependent amplitude attenu-
ation (roll-off filter). The use of higher quality ampli-
fiers was impossible because of the requirement for FDA
(Food and Drug Administration of the USA) approved
instrumentation with human subjects. These recording
amplifiers had built in roll-off filters which were not re-
movable, and had a set low-pass filter with maximum
value for each sampling rate. Because of the proprietary
nature of the hardware/software, and the clinical prohi-
bition from modification of these, it was not possible to
avoid the low-pass setting. Therefore, we had to experi-
mentally characterize this low-pass filtering, and correct
our analyses accordingly.

We determined the amplitude attenuation function
R(f) (roll-off factor) independently by means of an exter-
nal function generator by repeatedly sweeping (at a rate
of 10 seconds) at fixed amplitude through all frequen-
cies between 15Hz and 4000Hz at the 10KHz sampling
rate setting, and between 10 Hz and 300 Hz at the 1KHz
sampling rate setting. This R(f) followed a Lorentzian

Figure S8: The amplifier roll-off was calculated by repeatedly
scanning through frequencies at a fixed from 15Hz (green ar-
rows) and 4000Hz (blue arrows), and the amplitude attenua-
tion as a function of frequency could be determined directly
from the timeseries. (B) Illustrates this measured frequency-
dependent amplifier amplitude attenuation, R(f), at 10KHz
sampling rate.

type shape, as expected, and is shown in figure S8. We
divided our PSD’s by this filter, P (f) = PR(f)/R(f).
It completely removed the roll-off from the PSD’s, as il-
lustrated in figure 1 of the main text and also in figure
S6F. After correction for this roll-off, a definite noise floor
came into focus, revealed by the asymptote in figure S6F.

This noise floor is atypically large for experimental am-
plifiers, but we empirically established that they are the
source. This noise resides in the amplifiers, and does
not reside inside the brain. The amplifier noise floor was
determined experimentally by measuring the potential
across an equivalent conformation of resistors, shown in
figure S9. This was done in situ in the sense that parallel
clinical amplifiers remained attached in parallel during
the recording. The empiric values of the noise floor were
determined by calculating spectra of these resistor mea-
surements using the identical method used with brain
signals, and detailed above. Following on-line measured
impedance with electrodes on the brain surface, R2 was
set to 10kΩ and R1 to 0.5Ω (although noise values were
robust against increasing R1 to 1k Ohm). The result is
shown in figure 1 of the main text.
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Figure S9: Equivalent resistor arrangement during am-
plifier noise floor estimation. Following on-line measured
impedance, R2 was set to 10kΩ and R1 to 0.5Ω (although
noise values were robust against increasing R1 to 1kΩ).

We do not present further details of our independent
amplifier noise floor experiments, because the cortex data
suggests that the floors vary slightly between subjects,
electrodes, and recording days. Therefore we treated the
noise floor as a free (to be fitted) parameter in the data
analysis. The distributions of measured noise floors from
this resistor arrangement, and fit noise floors (described
below) were overlapping (consistent with one another),
and are shown in figure S17.

F. Fitting the PSD at High Frequency

Figure S10: PSD of a single pairwise re-referenced signal in
subject 1, after removal of amplifier roll-off.

We fit our experimental high frequency power spectral
density to the form P ' Af−χ + C(f). The first term,

Af−χ is the power law shaped power spectrum we wish
to explore, and C(f) is the amplifier noise floor. If C(f)
is known exactly, then the value of the exponent, χ is
straightforward, and given by the slope of the data on
a plot of ln (P (f)) vs. ln (f) after C(f) has been sub-
tracted.

Figure S11: Power law fit of S1 in frequency range 80 <
f < 200 for (A) noise floor C = 15500 and (B) C = 12500
(amplifier units), demonstrating that the exponent χ = 4 is
insensitive to the noise floor value at these lower frequencies
and that (B) provides a better global fit (arbitrary units of
power).

While it may have some frequency dependence, we
chose to approximate C(f) as a constant, C, because
we could not identify a robust frequency-dependent trend
across spectra, and, in our noise measurement across a se-
ries of resistors, C(f) was roughly linear in the 80-600Hz
range we fit our data in (Fig. S12). One choice for how
to estimate C would be the asymptote after roll-off cor-
rection, but this does not work because of an unknown
contribution that is non-uniform, and begins at ∼ 1kHz
(Fig. S12 and S10). The origins of this high frequency
contribution remain unresolved: It might reflect sensi-
tivity to details of the amplifier roll-off function R(f)
(amplified by the division), it might originate from the
internal electronics of the amplifiers, or tt could reflect an
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external high frequency source that is not fully removed
by the nearest neighbor pair referencing.

Figure S12: Measured spectra across the equivalent resistors,
following the recording for subject 2. The first 7 electrode-
pair channels are shown, after correcting for the amplifier fre-
quency response (roll-off). 60Hz harmonics omitted. Note
that all are approximately linear (with slope zero) in the fit-
ting range, and that some have an anomalous contribution in
the range above f > 1000Hz (arbitrary units of power).

In any case, a direct measurement of these noise floors
offline in our fitting range (Figs. S12 and S17) produces
a characteristic range of values, and we found that the
measured electrode-pair channel noise floors varied across
electrodes, within a distribution, and also on a day-to-
day basis. They may also have some sensitivity to the
total power in the signal, as shown in Fig. S16A (with
“fit noise floor” described below). In light of these un-
certainties, we felt that the only proper approach is a
self-consistent fitting procedure limited to the frequency
range, '80 Hz < f <'500 Hz.

Before detailing the self-consistent noise floor subtrac-
tion, observe that figure S11 demonstrates that the power
law with exponent χ ' 4 is stable and insensitive to
the exact value of the noise floor in the frequency range
80 < f < 200 Hz. Note that the noise floor choice
C = 15500 (amplifier units) extends the power law fit
all the way to 500 Hz.

We fit the PSD to the form P (f) ' Af−χ + C in the
frequency interval 80 Hz < f <500 Hz. The simplest
approach might be to plot log(P (f) − C) versus log(f)
for a range of guesses of the noise floor C, and choose the
value of C for which the curve straightens out best into a
straight line, and then letting the slope of that line being
the value of the exponent χ.

However, an infamous mistake in this procedure is to
apply global least squares fit, and leave it at that. On
a log-log plot, that assigns too much weight to the high-
est density of datapoints, at high frequency, where the
low power and high relative influence of the noise floor

Figure S13: Illustrations of the recursive range shrinking fit-
ting protocol of the PSD to the form form P (f) ' Af−χ+C.
(See text for details)
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Figure S14: Illustrationof the 3-parameter fit protocol to re-
cursively estimate the appropriate noise floor. fχn is plotted
vs P (f), and the new value of the noise floor, cn is estimated
by the intercept with the y axis at x = 0.

make the data noisiest. In reality, a fit should be stable
throughout the fitting range, and we employed a tech-
nique which is robust against range shrinking to a sub-
range within the total fitting range (illustrated in Fig.
S13).

The PSD crosses over to a different form at the low end,
near f0 ' 75 Hz. The noise floor becomes the important
factor at the high end, f > 400 Hz. The conventional
approach to this, which we employ, is to determine local
slopes χ(f) by performing least square fits to the curve
over only narrow frequency intervals, from a low cutoff
frequency, “fL” to a high cutoff frequency, “fH” - fL <
f < fH along the curve, and plot these χ(f) estimates
for a range of choices of the noise floor C. 1. If the
value of the locally fit exponent varies greatly for different
values of fL and fH within the global fitting range, then
the PSD is not well explained by a power-law in that
global range. The best fit for C is the χ(f) curve with
the widest flat plateau. The best value for χ is that
plateau value. A potential problem to be avoided with
this range-shrinking approach is that local slopes become
increasingly noisy for narrow fitting intervals fL < f <
fH , and the plateaus can then drown in the noise. In
light of this, and because of the need to automatize the
fitting procedure due to the large amount of data, we use
the following recursive protocol.

It starts with an initial guess for value of the exponent,
χ. That value is used for an initial estimate for the noise
floor C by means of a straight line fit of the form P (f) =
Ay + C as function of y = f−χ, using the high end of
our frequency range, 250 Hz≤ f ≤ 490 Hz (shown in
figure S14). Next, we use this estimate of C to improve
on the estimate of χ by performing least square fits to
log(P (f) − C) versus log(f) between fL < f < fH with
the fL < fH interval covering (expanding and shrinking
over) the entire frequency range 80 Hz < f <500 Hz.
We plotted these estimates χ(fL, fH), as illustrated in

Figure S15: (A)Correlations between the fitted values of the
exponent χ and the total power (amplifier units) in the sig-
nal between 80 Hz≤ f ≤ 500 Hz in the individual electrode
pairs of subjects S1 and S2. Red dots indicate channel pairs
rejected because of vasculature as discussed in the text. (B)
Correlations between the fitted values of the exponent χ and
the fitted noise floor C (amplifier units) in individual elec-
trode pairs of subjects S1 and S2.

Fig.13.B, with fH along the horizontal axis and different
lines representing different values of fL. (The onset of the
lines mark the values of fL + 20Hz, because fL is always
smaller than fH . Different values of fL are denoted by
different color lines.) The quality of each fit is reflected
by the presence of horizontal segments in the curves, by
the width of those segments with fH , and by collapse
of those segments with the curves at nearby fL. For
example, from figure S13B, we would conclude that χ =
3.95 ± 0.1; and then use this estimate to start the next
iteration cycle by setting χ = 3.95 in y = f−χ for the
next P (f) = Ay + C estimate of the noise floor C; and
so on. This iteration scheme always converged for our
data. The quality of the fit can be further judged by
plotting A(f) = (P (f) − C)fχ, to check how well the
final amplitude A is truly a frequency independent scalar
(in the frequency range of interest), see figure S13D.

The curves χ(fL, fH) in figure S13 B have distinct
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Figure S16: (A) Correlations between the fitted noise floor
C and the average power in the high frequency range 500
Hz≤ f ≤ 1000 Hz, for individual electrode pairs of subjects
S2. (B) Correlations between the average power in the high
frequency range 500 Hz≤ f ≤ 1000 Hz and the total power
between 80 Hz≤ f ≤ 500 Hz, for the individual electrode pairs
of subjects S1 and S2.

minima for intermediate values of fL and fH . This
shows how easily the exponent χ can be underestimated.
Choosing fL too close to f0 ' 75 Hz, where the PSD
crosses over to a less steep curve, systematically underes-
timates the exponent. Under estimating the noise floor C
has the same effect at the high frequency side; and results
in an up-swing in the χ(fL, fH) curves at high frequen-
cies. Overestimating the noise floor leads to negative
values of P (f)− C at high frequencies and a collapse to
erratic behavior in the χ(fL, fH) curves at high frequen-
cies. It is significant therefore that the curves deepen
during the iteration process in the interval where fL and
fH both take intermediate frequency values.

We performed this fitting protocol on the electrode pair
averaged PSD of subjects 1 to 4, with result χ = 4.0 ±
0.1. The upper limit of the fit was determined by the

Figure S17: This shows the difference in the distribution
across channels for the experimentally found calibration noise
floor (A) (averaged between 100-400 Hz), and the self-
consistent fits (B) for S2. The red and green dots in both pan-
els indicate the mean +/- STD of the experimentally found
calibration noise floor. The calibration was performed with
an identical set of clinical amplifiers in parallel, immediately
following the experimental recording (although in a differ-
ent room). Note that the channel distribution for the self-
consistent fit from experimental data has a slight rightward
shift, indicating that there may have been additional contri-
butions to the noise floor in the subject’s hospital room that
couldnt be accounted for in the calibration.

frequency at which the spectra ran into the noise floor,
but all were between 500 and 600 Hz (figure 2 of the main
text). Note that the electrode arrays in those subjects are
located at different parts of the motor cortex. We also
applied the same fits also to the more noisy individual
electrode pair PSD’s from all four subjects, leading to a
narrow distribution of exponents χ centered at the same
value χ = 4.0± 0.1 and with a width consistent with the
above error estimate. This is also shown in figure 4 of
the main text and addressed there.
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A logical follow-up issue is to check for possible system-
atic effects in the individual electrode pair signals. The
total power in each electrode varies greatly, by about 10
percent, as seen in Fig.S15. This has various reasons.
The most important one is probably the proximity of
blood vessels and/or variations in quality of electrode-
pia-cortex contact. The most anomalous (weakest) sig-
nals were cleanly correlated visually, in figure S4, with
electrodes sitting on vasculature and were removed from
consideration in further levels of analysis.

Figure S15A tests for correlations between the value of
the fitted exponent χ and the total power in each channel
pair. A weaker signal makes that the PSD drowns into
the noise floor at a lower frequency. That is likely to
result in a poorer fit and to a systematically smaller value
of χ, but figure S15B shows that this effect is weak.

Figure S15B tests for possible systematic correlations
between the fitted values of χ and C. It appears that
such correlations are weak compared to the channel pair
statistical noise. The fitted values of the amplifier noise
floors C in specific electrode pairs vary widely, by roughly
20 %. This is not due to the fitting protocol, because in
figure S16A the fitted noise floors correlate well to the
average high frequency power (at 500 Hz ≤ f ≤ 1000
Hz).

Finally, figure S16B shows that this average 500 Hz≤
f ≤ 1000 Hz high freq power is slightly correlated to
the total power between 80 Hz ≤ f ≤ 500 Hz, possibly
suggesting that the amplifier noise floors vary with input
power.

In conclusion, figures 15 and 16 suggest some system-
atic effects, but they are rather weak compared to statis-
tical variations between the electrode pairs. It does not
seem proper to pursue them further at this point.

G. Adjustment for a more complex form

Examination of figure 2 of the main text shows a clear
power-law in the cortical spectrum above 80Hz, in all 4
subjects sampled at 10kHz. The PSD changes its slope
below visually f0 ' 75 Hz. This knee at f0 is less pro-
nounced in subjects 2 and 3 because there are prominant
α− β peaks.

These rhythms obscure possible underlying broad band
features. We employed two approaches to get around this
and assessed the underlying PSD at frequencies below f0.
Both involved data from experiments that we performed
at a lower, 1kHz, sampling rate:
(1) The first is that we can take advantage of spatial
variation in these low frequency rhythms of the ECoG
recording. While most of the electrode-pair channels that
we record have the α and/or β rhythms, not all do. We
examined the PSDs of 16 subjects (subjects 5-20, see the
table in figure S1) performing the same fixation task.
We were able to visually identify 91 channels in which
the PSD did not show α and β rhythms. Selection bias
was avoided by visually examining spectra on linear axes

Figure S18: Electrode pair channels with θ/α/β were visually
rejected by viewing on linear axes, so that selection bias for
“power law” shape - linear on log-log axes could be avoided.

(see figure S18). The lower frequencies of these selected
channels could then be examined for scale-free, power-law
properties, as they were devoid of the peaked rhythms.
(2) One goal of this examination of scale-free (power-
law) properties in motor cortex was to see how the power
spectrum changes when the brain becomes active. Our
experience with cortical change during motor movement
made that a natural setting to examine activity, but the α
and β rhythms are ubiquitous in motor areas. The second
strategy was to use variation in the spectra to decouple
and remove the rhythms from the broad band features.
We developed the technique to this in a different study
using a naive, principle component-type, analysis (repro-
duced below) and we obtained qualitative consistency
with the results of fixation data. This was ultimately
feasible because a finger movement task that we used
resulted in spectral change in which the low frequency
rhythms varied differently from a broad-band spectral
change from 5-200 Hz. It was important to examine this
movement task, because it allowed us to look at how the
measured power-law phenomena (demonstrated below)
behaved when the brain became active, in the absence of
the α and β rhythms.

The 1 kHz sampled data (subjects 5-21) were limited
by sampling rate and by built-in proprietary constraints
of FDA approved amplifiers to spectra which ended at
a high value of f = 200Hz. In order to characterize
the power law at f > 80Hz, this was insufficient, and
we had to examine data recorded at a higher sampling
rate. However, armed with the high quality fit of P ' 1

f4

above 80Hz, we could examine the lower frequencies, and
impose the contstraint that any formalized structure in
the PSD must fit P ' 1

f4 for large f .
a. naive fit The first step in examining whether

there is evidence for a power-law of some kind in the PSD
is a naive fit of P ' 1

fχ within a low frequency range, for
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the 1kHz data. To do this, spectra were calculated in
the same way as for the 10kHz data. They were then
corrected for frequency-dependent amplifier attenuation
(roll-off). They were not corrected for noise floor, be-
cause the power of the signal in the fitting range is many
orders of magnitude larger than the noise floor contribu-
tion. The naive power law fit to this averaged PSD over
15 Hz ≤ f ≤ 80 Hz yielded the value χL = 2.46 ± 0.32
(see figure 3 of the main text and figure S19).

b. Lorentzian adjustment Rather than the naive fit,
we propose also the following (naively chosen) phe-
nomenological global fitting form

PA(f) ' A f−χL

1 +
(
f
f0

)χH (6)

and apply it over the frequency range 15 Hz ≤ f ≤195 Hz
for the 91 channels of 1KHz data which did not have
blatant peaks at lower frequencies, nor inordinately

Figure S19: Low frequency fits to the 91 channel pair PSD’s
from 16 subjects, sampled at 1 kHz over frequency range
15 Hz ≤ f ≤ 80 Hz (blue), and over 15 Hz ≤ f ≤ 195 Hz

after multiplying the PSD’s with 1 +
(

1
75

)2
(green). The lines

are the averaged spectra from all electrode-pair channels in all
subjects. Note that this transformation pulls a straight line
with the form P ∼ 1/f2 out, across the entire fitting range.

large noise floors at higher frequency ranges. This is
an approximation of a two-Lorentzian form, where the
2nd factor, f−χL , is obtained by 1

1+
(
f
fL

)χL −→ f−χL

for f � fL and is therefore valid in the case that the
lower ”knee” at is well below 15Hz. We imposed the
condition that the two exponents add-up to the value
χ = χL + χH = 4.0 ± 0.1 (established above, for data
sampled at 10kHz). For each electrode-pair channel’s
PSD, P (f), we iteratively updated estimates of χL and
f0, until they converged on stable values, by:

(1) Calculating an updated χL as the slope of the least-
squares linear fit of log(f) vs. log

(
P (f)

(
1 + f

f0

4−χL
))

on the fitting range 15 Hz ≤ f ≤195 Hz.

(2) Calculating an updated f0 as the value of f0
in the fitting range 15 Hz ≤ f0 ≤195 Hz for which the

slope of log(f) vs. log
(
P (f)

(
1+ f

f0

4−χL
)

fχL

)
was closest to

zero.

This produced χL=2.01±0.18 and f0=77Hz±14Hz,
across the 91 electrode channel pairs in subjects 5-20.

H. Removal of the α and β peaks

While 1kHz data spectra could be fit to low frequencies
in channels which lacked the low frequency α/β rhythms,
we wanted to know how the PSD changed with increased
neural activity. Based upon previous studies, we knew
that the cortical PSD in motor areas changed reliably
during motor movement, reflecting an increase in activity
of the local neuronal population. In order to examine just
the scale-free, power-law activity however, we needed to
employ a technique to remove the α and β rhythms, since
they are ubiquitous in motor areas.

Using a technique developed and elaborated in the
manuscript Decoupling the Cortical Power Spectrum
Reveals Real-time Representation of Individual Finger
Movements in Humans by K.J. Miller et. al. in J Neu-
rosci, 2009; 29, 3132, we were able to decouple and re-
move the α and β rhythms from spectral samples dur-
ing periods of finger movement and rest, in sites that
showed movement-associated cortical change in the 76-
100Hz range (as detailed in Spectral changes in corti-
cal surface potentials during motor movement by K.J.
Miller et. al. in J Neurosci, 2007;27, 2424). In abbrevi-
ated form, the decoupling method is as follows. Subjects
are given visual cues to perform repeated finger move-
ment (Fig. S20 A). Individual fingers were moved sev-
eral times in response to each visual cue, and position
was recorded using a dataglove (Fig. S20 B). The peak
displacement of each finger movement was marked with
an event marker, τq (e.g. black arrow). Event mark-
ers, to characterize non-movement spectra for the “rest
state” were chosen at random times at least one-half sec-
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Figure S20: Using variation in spectra during finger move-
ment, the so-called α and β peaks in the PSD can be ex-
tracted. (See text for details)

ond from any movement event, and one-quarter second
from each other. A pair-wise electrode difference chan-
nel, Vn(t), is shown with these event markers (colored) in

figure S20 C. A 1 sec Hann widow H(t)centered at each
event marker, is imposed on the data to select the epoch
corresponding to that specific event marker. Samples of
the power spectral density (PSD, Pn (f, τq)) associated
with each event marker are obtained for each epoch by
Fourier transformation from these epochs (Fig. S20 D).
Each individual epoch power spectrum is normalized by
dividing through by the mean power at each frequency,
and taking the log (Fig. S20 E), and a Principal Compo-
nent decomposition method is applied to these normal-
ized spectra. Principal Spectral Components (PSCs) are
calculated across these across these sets of epoch power
spectra (Fig. S20 F). The first is primarily flat across all
frequencies (pink), and the second is peaked in the classic
α/β range (brown). Figure (S20 G) shows back projec-
tions of the first PSC (upper - pink) and second PSC
(lower - brown) to the power spectral density samples,
sorted by class. Note that the first PSC is specific for
forefinger, and the second shows significant decrease for
all movement classes with respect to rest (consistent with
ERD). We can then reconstruct average spectra from one
finger movement class (in this case, forefinger), and rest
without the α and β rhythms, which are captured by the
2nd and 3rd components. The average of these recon-
structed spectra, without the 2nd and 3rd components, is
shown in figure 4 of the main text, and is reproduced the
last panel of figure S20.

After this decomposition, we reconstructed the mean
spectrum for each channel during rest, PR(f), and during
movement, PM (f). Each of these were approximately lin-
ear on a log-log plot after multiplication by

(
1 + f

75

2
)

,
and had slope consistent with χL = −2 (used to pro-
duce figure 4 of the main text, but not to quantitatively
test the shift). In order to assess whether there was a
shift in exponent during movement, we examined log(f)
vs log(PM (f)/PR(f)), and found that the slope of this
quantity on the interval 25-195Hz was essentially zero -
03± .09, (±SD, N=25, p=0.104, by paired t-test). This
implied that there was no shift in exponent, χL with
movement (when local neuronal populations became ac-
tive). Because there was no shift in exponent, the aver-
age values of (PM (f)/PR(f)) determine the change in the
coefficient, A, of the power law process (geometric mean
R = 1.76, with a variation (standard deviation) of order
0.31 (maximum 2.47, minimum 1.29, N=25, p = 5.9∗1015

by t-test of log-ratio vs. 0 )). Please note that this num-
ber reflects a reasonable range, rather than a fundamen-
tal quantity.
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II. SIMULATING THE ORIGIN OF THE ECOG
POWER SPECTRUM

Each ECoG electrode lies sub-durally on the cortex
(figure 5A of the main text), with '5mm2 of platinum
surface area exposed. The cortical volume immediately
beneath this exposed area, contains approximately 105

neurons, and a typical neurons has' 104 synaptic inputs.
The electric voltages observed by the ECoG electrodes

probe the same features as EEG and MEG but with supe-
rior spatial and temporal resolution. Following the con-
ventional EEG/MEG literature (See the Nunez, et. al.,
and Hamalainen, et. al. references of the main text), the
cortex is interpreted as an ionic liquid filled with current
sources ~Js. These current sources arise as currents flow-
ing in and out of the neurons. The voltage at a specific
electrode at position is then the superposition of all cur-
rent sources i:

V (t) =
∑
i

∇ · ~Js(i)
4πσdi

(7)

with ~∇ · ~Js the divergence of the current of source i,
σ the electric conductivity of the ionic liquid, and di
the distance between the current source and the elec-
trode. (This assumes a uniform medium approximation
and some other simplifications.) It is custom in the
EEG/MEG literature to sort the current sources into
pairs, i.e., to think in terms of current dipoles, to combine
them at various levels of coarse graining into effective
meso-copic dipoles, and to treat those as instantaneous.

For example, each synaptic event induces a post-
synaptic current influx. The amplitude and sign of this
input current varies between synapses. The post synaptic
charge builds up due to current influx, with a timescale
of approximately τ1 = 3 msec. This charge spreads along
the dendrite, overall diffusing toward the soma, and, as
it does so, it also ohmically leaks back to the ionic ex-
tracellular bath (accordingly leaky cable equation) over a
much longer time scale. The ECoG temporal and spatial
resolutions are such that (in the passive dendrite approx-
imation) the in and out flux components of every dipole
are separable in time, and also that the temporal corre-
lations between individual dipoles become visible. They
are at the origin of the ECoG broad band.

The dominant contributors to the cortical change are
believed to be the synaptic current events of the cortical
pyramidal neurons, which have a primary dendrite that
lies roughly normal to the cortical surface, so that the en-
semble of synaptic current dipoles have a common direc-
tionality. Hamalainen, et. al., in their 1993 paper Magne-
toencephalographytheory, instrumentation, and applica-
tions to noninvasive studies of the working human brain.,
estimated the isolated, individual transient dipole mo-
ments, from each synapse to be of order |~q| ≈ 20 fA·
m. Murakami and Okada, in their 2006 paper Recon-
structed shapes, firing patterns and intracellular current
dipole moments of layer V neocortical pyramidal cells,

found that the net dipole moment produced by an entire
neuron, in response to various kinds of more global in-
put is of order |~qglobal| ≈1 pA· m, in agreement with the
Hamalainen estimate, since only a subset of synapses are
activated during a common input.

A. Simulation

Figure S21: In the simulation, a randomly generated set of
delta-function action potentials arrival times (A) is convolved
with a characterized, exponentially decaying, post-synaptic
current (B). The time-dependence of the dipole is approx-
imated by the dendritic trans-membrane current, which is
proportional to the difference in transmembrane charge den-
sity (C). These events are all concurrent within the neurons
beneath one of our electrodes (D). (Note that the spatial re-
lationship, and many other factors are not incorporated into
this simple model). The neuronal outline was inspired by
Hamalainen, et. al., in their 2001 paper: Magnetoencephalog-
raphytheory, instrumentation, and applications to noninva-
sive studies of the working human brain..

.

While there are many potential models that are math-
ematically consistent with the form of the spectrum that
we found experimentally, we performed a simplified sim-
ulation of only one such model. We simulated the time-
course of current dipole sources in the dendritic struc-
tures of the neurons beneath each of our electrodes with
three simple processes. Each pyramidal neuron, be-
neath each one of our electrodes, receives 6000-25000
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synaptic inputs, and we model one with 6000 synapses.
The series of input action potential arrival times from
each pre-synaptic neuron was modeled with a Poisson-
distribution in time. When an action potential arrives at
a synapse, it produces a string of events which culminate
in a stereotyped current across the synaptic membrane
of the downstream neuron. In this model, the stereo-
typed transient current of a single synaptic input had
a sharp rise, and an exponential decay with timescale of
τ = (2π70Hz)−1 = 2.3ms consistent with empirical mea-
surement (Sabatini BL & Regehr WG (1996) Nature 384,
170-172.). The superposition of many of these synaptic
input currents perturbs the trans-membrane difference in
charge concentration between the inside and outside of
the neuron (Connor JA & Stevens CF (1971) The Journal
of Physiology 213, 1-19.). The new trans-membrane po-
tential difference caused by this difference in charge con-
centration causes ohmic current, of charged ion species,
through the dendritic membrane and the proximal soma.
In this simulation, we approximate the timecourse of the
dipole that gives rise to our potentials as the timecourse
of this ohmic current. We created 2 minutes of 10kHz
sampled simulated data for a single neuron with 6000
synaptic inputs, each with current influx delay timescale
of order τ = (2πf0)−1, and peak current magnitude ran-
domly chosen on the interval from -1 to 1 (arbitrary
units), for each synapse. Mean input action potential
rates of 15, 30, and 60 AP

synapse∗s .
We provide a basic simulation in order to demon-

strate how this power-law scaling we observe experimen-
tally might arise from neuronal processes at the most
basic level. While this simulation is clearly an over-
simplification, it may provide useful insight into how such
power-of-2, integer, scale free processes might arise in cor-
tical signals. In particular, it demonstrates how power-
law spectra might directly reflect the aggregate, average
firing rates of the inputs to a cortical population. Note
that the model presented below only addresses the time
dependence of simple processes in a single neuron, ne-
glecting spatial summation across neurons and the form
that the post-synaptic dipoles which produce the macro-
scopic potentials actually might take.

The simulation for the time dependence of the currents
that produce these current dipole potentials consists of
a single neuron with 3 basic elements which produce the
time-course of the current dipole, and is illustrated in
Fig 5 of the main text and Fig. S21:

Poisson distributed input action potentials: The
first element is the generation of 6 × 103 input spike
trains with Poisson-distributed spike arrival times times
(Figs. 5C and S21) to simulate the presynaptic input.

Exponentially-decaying post-synaptic potential:
Each input action potential is convolved with a post-
synaptic, exponentially decaying, current shape as in
Fig. S21. The convolved spike train is multiplied by a

random scalar between -1 and 1 to reflect different signs
and magnitude of different synapses. The exponential
decay gives rise to one factor of 1

f2 in the P ' 1
f4 above

f ∼80Hz. At lower frequencies, τ produces a knee in
the PSD, and in the model, produces a Lorentzian,

1
1+(f/f0)

2 . The relation between f0 and τ is then

τ = (2πf0)−1 = 2.3ms. If a range of times, centered at
τ = 2.3ms, rather than a single value is used, the results
of the simulation are similar, but the knee is not as sharp.

Temporal accumulation of synaptic current, and
loss across the dendritic membrane: These post-
synaptic current / action potential temporal convolu-
tions are summed across synapses, and the difference in
charge across the membrane, ∗ ([Q]in − [Q]out), accumu-
lates over time, and is lost ohmically as leaky current
through the dendritic membrane. The leakage current of
this charge through the dendritic membrane is what we
simulate as the time-dependence of the dendritic dipole
(with time constant α−1 below).

∂I(t)
∂t

= −αI(t) +Q(t) (8)

Q(t) =
∑
k

sk conv (η(τ)εk(t)) (9)

Where we denote a series of delta functions reflect-
ing the spike arrival times at synapse k as εk(t), the
shape of the post-synaptic response as η(τ) (total
length T ), a random number on the interval from
-1 to 1, as sk, the decay timescale for dendritic
current efflux as α, and the convolution operation

conv (a(τ), b(t)) =
T/2∫
−T/2

dτ a(τ)b(t + τ) (and b is zero

padded at the edges). I(t)is the simulated time depen-
dence of our surface potential measurements, from which
we calculate our simulated spectrum.

The PSD of these reproduces the static (fixation) and
active (movement vs. rest) spectra that we observe rea-
sonably well, and this is shown in figure 5 of the main
text. There are many equivalent model processes that
would generate the power-law type spectra that we mea-
sure experimentally. We believe that a common key fea-
ture of this model, and the other equivalent neural mod-
els, is that changes in the mean firing rate of input neu-
rons are reflected by changes in scale-free, power-law, as-
pects of the spectra, where the shape is preserved, but the
amplitude is not. The ability to capture non-oscillatory,
broadband, change is a powerful tool, and is presented
in a recent manuscript, Decoupling the Cortical Power
Spectrum Reveals Real-time Representation of Individual
Finger Movements in Humans by K.J. Miller et. al. in
Journal of Neuroscience in 2009; 29, 3132.


